KOMBINASI METODE K-NEAREST NEIGHBOR DAN NAÏVE BAYES UNTUK KLASIFIKASI DATA

Mega Kartika Sari, Ernawati Ernawati, Pranowo Pranowo

Abstract


Data mining banyak digunakan untuk membantu menentukan keputusan dengan memprediksi tren data masa depan. K-Nearest Neighbor dan Naïve Bayes merupakan metode-metode data mining untuk klasifikasi data yang cukup populer. Kedua metode tersebut masing-masing memiliki kelemahan. Proses pengolahan data dengan metode KNN lebih lama dibanding dengan Naïve Bayes. Berdasarkan penelitian yang dilakukan oleh beberapa peneliti, metode KNN dan Naïve Bayes memiliki nilai keakuratan yang cukup tinggi Pada penelitian ini, Naïve Bayes menghasilkan nilai keakuratan yang lebih kecil dibanding metode KNN. Dari permasalahan di atas, maka diusulkan metode kombinasi KNN dan Naïve Bayes untuk mengatasi kelemahan tersebut. Metode KNN, Naïve Bayes, dan metode kombinasi KNNNaïve Bayes diujikan pada data yang sama untuk memperoleh hasil perbandingan persentase keakuratan dan lama waktu proses. Hasil pengujian ketiga metode dengan Nursery dataset, membuktikan bahwa, metode kombinasi KNN-Naïve Bayes berhasil mengatasi kelemahan pada Naïve Bayes ataupun KNN. Proses pengolahan data metode kombinasi KNN-Naïve Bayes lebih cepat dibanding KNN dan Naïve Bayes. Selain itu hasil persentase keakuratan yang diperoleh metode KNN-Naïve Bayes lebih tinggi dibanding dengan metode KNN dan Naïve Bayes.


Full Text:

PDF

References


K. Adhatrao, et al., “Predicting Students' Performance using ID3 AND C4.5 Classification Algorithms”, International Journal of Data Mining & Knowledge Management Process, vol.3, no.5, pp.39-52, 2013.

N. Baby and P.L. T., “Customer Classification And Prediction Based On Data Mining Technique”, International Journal of Emerging Technology and Advanced Engineering, vol.2, no.12, pp.314-18, 2012.

S. Bagga and G.N. Singh, “Conceptual Three Phase Iterative Model of KDD”, International Journal of Computers & Technology, vol.2. no.1, pp.6-8, 2012.

S. Beniwal and J. Arora, “Classification and Feature Selection Techniques in Data Mining”, International Journal of Engineering Research & Technology, vol.1, no.5, pp.1-6, 2012.

K. Chou and H. Shen, “Predicting Eukaryotic Protein Subcellular Location by Fusing Optimized Evidence- Theoretic K-Nearest Neighbor Classifiers”, Journal of Proteome Research, vol.5, no.8, pp.1888-1897, 2006.

Y.A. Christobel and P. Sivaprakasam, “A New Classwise k Nearest Neighbor (CKNN) Method for the Classification of Diabetes Dataset”, International Journal of Engineering and Advanced Technology, vol.2, no.3, pp.396-200, 2013.

A. Danesh, et al., “Improve Text Classification Accuracy Based on Classifier Fusion Methods”, Information Fusion, pp.1-6, 2007.

D.M. Farid, N. Harbi, M.Z. Rahman, “Combining Naive Bayes and Decision Tree”, International Journal of Network Security & Its Applications, vol.2, no.2, pp.12- 25, 2010.

G. Guo, et al., “Using KNN Model for Automatic Text Categorizaton”, Soft Computing, vol.10, no.5, pp.423-430, 2006.

Hall, M., 2007. A Decision Tree-Based Attribute Weighting Filter for Naïve Bayes. Knowledge-Based Systems, 20(2), pp.120-126.

V. Jain, G.S. Narula, M. Singh, “Implementation of Data Mining in Online Shopping System using Tanagara Tool”, International Journal of Computer Scienceand Engineering, vol.2, no.1, pp.47-58, 2013.

L. Jiang, et al., “Learning k-Nearest Neighbor Naïve Bayes for Ranking. Advanced Data Mining and Applications”, vol. 3584, pp.175-185, 2005.

H. Jnanamurthy, et al., “Discovery of Maximal Frequent Item Sets using Subset Creation”, International Journal of Data Mining & Knowledge Management Process, vol.3, no.1, pp.27-38, 2013.

G. Kaur and S. Aggarwal, “Perfomance Analysis of Association Rule Mining Algorithms”, International Journal of Advanced Research in Computer Science and Software Engineering, vol.3, no.8, pp.856-58, 2013. [

H. Kaur and H. Kaur, “Proposed Work for Classification and Selection of Best Saving Service for Banking Using Decision tree Algorithms”, International Journal of Advanced Research in Computer Science and Software Engineering, vol.3, no.9, pp.680-84, 2013.

V. Kumar and A. Chadha, “An Empirical Study of The Data Mining Techniques in Higher Education”, International Journal of Advanced Computer Science and Applications, vol.2, no.3, pp.80-84, 2011.

B. Nithyasri, K. Nandhini, E. Chandra, “Classification Techniqes in Education Domain”. International Journal on Computer Science and Engineering, vol.2, no.5, pp.1679-84, 2010. Seminar Nasional Teknologi Informasi dan Multimedia 2015 STMIK AMIKOM Yogyakarta, 6-8 Februari 2015 ISSN : 2302-3805 2.1-41

T.N. Phyu, “Survey of Classification Techniques in Data Mining”, Proceedings of International MultiConference of engineers and Computer Scientist, 2009.

H. Sahu, S. Shrma, S. Gondhalakar, “A Brief Overview on Data Mining Survey”. International Journal of Computer Technology and Electronics Engineering, vol.1, no.3, pp.114-21, 2011.

S.F. Shazmeen, M.M.A. Baig, M.R. Pawar, “Performance Evaluation of Different Data Mining Classification Algorithm and Predictive Analysis”, IOSR Journal of Computer Engineering, vol.10, no.6, pp.1-6, 2013.

Singh, Agarwal, Rana, A.. “Perfomance Measure of Similis and FP-Growth Algorithm”, International Journal of Computer Applications, vol.62, no.6, pp.25-31, 2013.

K.S. Singh, G. Wayal, N. Sharma, “A Review: Data Mining with Fuzzy Association Rule Mining” International Journal of Engineering Research & Technology, vol.1, no.5, pp.1-4, 2012.

J. Suresh, P. Rushyanth, C. Trinath, “Generating Association Rule Mining using Apriori and FP-Growth Algorithms”, International Journal of Computer Trends and Technology, vol.4, no.4, pp.887-92, 2013.

S.L. Ting, W.H. Ip, H.C.T. Albert, “Is Naïve Bayes a Good Classifier for Document Classification?” International Journal of Software Engineering and Its Applications, vol.5, no.3, pp.37-46 , 2011.

Z. Xie, et al., “SNNB: A Selective Neighborhood Based Naïve Bayes for Lazy Learning”. Advances in Knowledge Discovery and Data Mining, vol.2336, pp.104-114, 2002.

K. Umamaheswari and S. Niraimathi, “A Study on Student Data Analysis Using Data Mining Techniques”, International Journal of Advanced Research in Computer Science and Software Engineering, vol.3, no.8, pp.117-20, 2013.

X. Wu, et al., ”Top 10 Algorithms in Data Mining”, Knowledge and Information System, vol.14, no.1, pp.1-37,


Refbacks

  • There are currently no refbacks.