PENDETEKSIAN PANTULAN SINAR DI AREA SERVIKS PADA CITRA SERVIKOGRAFI
Abstract
Salah satu cara untuk mendiagnosis atau mendeteksi kanker serviks oleh dokter atau evaluator adalah dengan melihat dan menganalisis servigram untuk menentukan apakah tampak lesi pada area serviks. Untuk melihat lesi pada area serviks terkadang menjadi samar dikarenakan adanya pantulan sinar/cahaya dari kamera yang digunakan. Pantulan sinar ini harus dihilangkan agar tidak terjadi kesamaran antara keduanya. Pada penelitian ini, kami mengusulkan suatu pengembangan metode atau algoritma untuk mendeteksi pantulan sinar tersebut pada area permukaan serviks. Proses deteksi pantulan sinar dengan memanfaatkan saturasi, dilakukan untuk menghilangkan area tersebut. Hasil percobaan deteksi pantulan sinar menunjukkan bahwa algoritma yang dibangun secara umum sudah sesuai seperti yang diharapkan.
Full Text:
PDFReferences
Gao, Fei (2005). An Efficient Approach to Automated Segmentation. MSc Thesis. Texas Tech University. Gonzales, Rafael.C., Ricahard E. Woods, 2002. Digital Image Processing, Second Edition, Pearson Prentice Hall, India. Gordon, Shiri (2008). Automatic Content Analysis of Uterine Cervix Images using Computerized Tools. PhD Thesis. Tel Aviv University. Hartati Nur Wijaya, July 2010. Cegah dan Deteksi Kanker Serviks, Elex Media Komputindo. Huang, Xiaolei., Wei Wang, Zhiyun Xue, Sameer Antani, L. Rodney Long and Jose Jeronimo, 2008, Tissue Classification using Cluster Features for Lesion Detection in Digital Cervigrams, Proceedings of SPIE Medical Imaging, Vol. 6914, pp. 69141Z 1-8, February. Lotenberg, Shelly., Shiri Gordon and HayitGreenspan, 2009. Shape Priors for Segmentation of Cervix Region Within Uterine Cervix Images, Journal of Digital Imaging, Vol 22. No.3, pp 286-296. RinaEka,2009.KankerServiks, http://www.suaradokter.com/, diakses 11 Februari 2011 Torres, F., Angulo, J., Ortiz, F., 2003, Automatic detection of specular reflectance in colour images using the ms diagram, In : CAIP03. 132-139. Uneyama, S., Godin G., 2004, Separation of difuse and specular components of surface reflection by use of polarization and statistical analysis of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 26. Vinay, Kumar., Abbas, Abul K, Fausto, Nelson Mitchell, Richard N, 2007. Robbins Basic Pathology ((8th ed.) ed.). Saunders Elsevier. pp. 718–721. World Health Organization (WHO), Cancer, http://www.who.int/cancer/en/ , diakses 12 Februari 2011. WHO-International Agency for Research on Cancer (2008). GLOBOCAN 2008. Xue- Zhiyun., S. Antani, L.R. Long, J. Jeronimo, G.R. Thoma, 2010, Web – Accesible Cervigram Automatic Segmentation Tool, Proceeding on SPIE Medical Imaging, 7628, 76280Z (2010). Xue-Zhiyun, L. Rodney Long, Sammer Antani, Jose Jeronimo, George R. Thoma, 2009, Segmentation of Mosaicm in Cervicographic Images using Support Vector Machines. National Library of Medicine, NIH, Bethesda and program for Appropriate Technology in Healthcare (PATH), Seattle. Xue-Zhiyun., S. Antani, L.R. Long, J. Jeronimo, G.R.Thoma, 2008, A Web – Accesible-Content-Based Cervicographic Image Retrieval System, Proceedings of SPIE Medical Imaging, Vol. 6919, pp. 691907 -1 – 9, February. Xue-Zhiyun, Long, L.R. Antani, S. Thoma. G.R, J. Jeronimo, 2008, Cervicographic Image Retrieval by Spatial Similarity of Lesions, Proceeding of the 19 th International Conference on Pattern Recognation, pp. 1- 4. Xue-Zhiyun, L. Rodney Long, Sammer Antani, Jose Jeronimo, George R. Thoma, 2007, Investigating CBIR Techniques for Cervicographic Images. Anual Symposium Proceding- Americal Medical Informatics Asociation. Zimmerman, G., H. Greenspan, 2006, Automatic Detection of Specular Reflections in Uterine Cervix Images, In: Proceeding of SPIE Medical Imaging, Vol. 6144, pp. 2037 – 2045.
Refbacks
- There are currently no refbacks.