SEGMENTASI MODEL AKTIF KONTUR SBGFRLS PADA PAMOR KERIS

Oskar Ika Adi Nugroho, Pranowo Pranowo

Abstract


Pamor merupakan hiasan atau motif atau ornamen yang terdapat pada bilah tosan aji (Keris, Tombak, Pedang atau Wedung dan lain lainnya). Penulis tertarik untuk melakukan penelitian segmentasi pada pamor keris dengan metode Selective Binary dan Gaussian Filtering Regularized Set Level (SBGFRLS). Metode region based active contour model (ACM) digunakan dalam tulisan ini. Hal ini dilaksanakan dengan pengolahan khusus metode Selective Binary dan Gaussian Filtering Regularized Set Level (SBGFRLS), yang langkah pertamanya secara selektif menentukan fungsi level set menjadi biner, dan kemudian menggunakan kernel Gaussian smoothing untuk mengaturnya. Keuntungan dari metode ini adalah sebagai berikut. Pertama, sebuah wilayah fungsi signed pressure force (SPF) secara efisien dapat menghentikan kontur di tepi yang lemah atau tepi yang kabur. Kedua, eksterior dan interior batas dapat secara otomatis terdeteksi dengan kontur awal berada di mana saja pada citra. Ketiga, ACM dengan SBGFRLS memiliki sifat segmentasi lokal atau global selektif. Hal ini dapat mensegmen tidak hanya obyek yang diinginkan tetapi juga obyek obyek lainnya. Keempat, fungsi level set dapat dengan mudah diinisialisasi dengan fungsi biner, yang tentunya lebih efisien untuk dibangun daripada signed distance function (SDF). Biaya komputasi untuk re-inisialisasi juga dapat dikurangi.

Full Text:

PDF

References


A. Tsai, A. Yezzi, A.S. Willsky, 2001 Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification, IEEE Transaction on Image Processing 10

A. Vasilevskiy, K. Siddiqi, 2002, Flux-maximizing geometric flows, IEEE Transaction on Pattern Analysis and Machine Intelligence 24

C. Davatzikos, J.L. Prince, 1995 An active contour model for mapping the cortex, IEEE Transaction on Medical Imaging 14

C. Li, C. Kao, J.C. Gore, Z. Ding, 2008, Minimization of region-scalable fitting energy for image segmentation, IEEE Transaction on Image Processing 17

C. Xu, J.L. Prince, 1998 Snakes, shapes, and gradient vector flow, IEEE Transaction on Image Processing 7

C.M. Li, C. Kao, J. Gore, Z. Ding, 2007, Implicit active contours driven by local binary fitting energy, in: IEEE Conference on Computer Vision and Pattern Recognition,

C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, 2005, Level set evolution without re-initialization: a new variational formulation, in: IEEE Conference on Computer Vision and Pattern Recognition, San Diego

C.Y. Xu, A. Yezzi Jr., J.L. Prince, 2000, On the relationship between parametric and geometric active contours, in: Processing of 34th Asilomar Conference on Signals Systems and Computers

D. Mumford, J. Shah, 1989, Optimal approximation by piecewise smooth function and associated variational problems, Communication on Pure and Applied Mathematics 42

Edward Frey ,2010,The Kris Mystic Weapon of The Malay World

G. Aubert, P. Kornprobst, 2002, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, New York.

G.P. Zhu, Sh.Q. Zhang, Q.SH. Zeng, Ch.H. Wang, 2007, Boundary-based image segmentation using binary level set method, Optical Engineering 46

J. Lie, M. Lysaker, X.C. Tai, 2006, A binary level set model and some application to Munford–Shah image segmentation, IEEE Transaction on Image Processing 15

Kaihua Zhang, Lei Zhang, Huihui Song, Wengang Zhou, 2010, Active contours with selective local or global segmentation: A new formulation and level set method, Image and Vision Computing 28

Ki Ageng Swalono, Catatan mengenai PAMOR KERIS

L.A. Vese, T.F. Chan, 2002 A multiphase level set framework for image segmentation using the Mumford– Shah model, International Journal of Computer Vision 50

M. Kass, A. Witkin, D. Terzopoulos, 1988, Snakes: active contour models, International Journal of Computer Vision 1

N. Paragios, R. Deriche, 2000, Geodesic active contours and level sets for detection and tracking of moving objects, IEEE Transaction on Pattern Analysis and Machine Intelligence 22

N. Paragios, R. Deriche, 2002 Geodesic active regions and level set methods for supervised texture segmentation, International Journal of Computer Vision 46

N. Xu, N. Ahuia, R. Bansal, 2007,Object segmentation using graph cuts based active contours, Computer Vision and Image Understanding 107 .

P. Perona, J. Malik, 1990 Scale-space and edge detection using anisotropic diffusion, IEEE Transaction on Pattern Analysis and Machine Intelligence 12

R. Ronfard, 2002 Region-based strategies for active contour models, International Journal of Computer Vision 46


Refbacks

  • There are currently no refbacks.