REVIEW PREDIKSI PENYEBARAN INFORMASI DENGAN HAWKES POINT PROCESS

Neny Sulistianingsih, Edi Winarko, Moh. Edi Wibowo

Abstract


Hawkes Point Processes digunakan untuk memprediksikan kejadian di masa depan banyak memiliki keunggulan dibandingkan dengan pendekatan lainnya seperti pendekatan bayesian, Poisson Process dan Kernel Based. Kemudahan dalam pengembangan formula dasar Hawkes Point Processes menyebabkan banyak penelitian menggunakan dan mengembangkan pendekatan Hawkes Point Processes untuk mempelajari fenomena-fenomena yang terjadi di dunia nyata.

Selain itu, banyak model yang diturunkan dari Hawkes Point Processes memungkinkan banyak pengembangan pada topik ini. Seperti pada Hawkes Point Processes satu dimensi yang terdiri dari self- dan mutually exciting point process. Penelitian-penelitian yang menggunakan self-exciting point process sebagai model dasar yang digunakan, mempertimbangkan bahwa kejadian-kejadian yang terjadi di masa lalu berpengaruh terhadap kejadian di masa depan. Sedangkan peneliti yang melihat keterkaitan (tarik menarik) antara kejadian di masa lalu yang akan mempengaruhi hasil prediksi kejadian di masa depan dapat menggunakan model mutually exciting point process. Tujuan dari naskah ini adalah adalah untuk memperkenalkan Hawkes Point Processes dan model turunannya serta beberapa penelitian yang menggunakan pendekatan tersebut, terutama pada prediksi penyebaran informasi

Full Text:

PDF

References


A. G. Hawkes, “Spectra of some self-exciting and mutually exciting point process,” vol. 58, no. 1, pp. 83–90, 1971.

M. G. Moore and M. A. Davenport, “Analysis of wireless networks using Hawkes processes,” 2016.

J. C. L. Pinto, T. Chahed, and E. Altman, “Trend detection in social networks using Hawkes processes,” Proc. 2015 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Min. 2015 - ASONAM ’15, pp. 1441–1448, 2015.

J. C. L. Pinto and T. Chahed, “Modeling Multi-topic Information Diffusion in Social Networks Using Latent Dirichlet Allocation and Hawkes Processes,” 2014 Tenth Int. Conf. Signal-Image Technol. Internet-Based Syst., pp. 339–346, 2014.

C. Luo, X. Zheng, and D. Zeng, “Inferring social influence and meme interaction with Hawkes processes,” 2015 IEEE Int. Conf. Intell. Secur. Informatics Secur. World through an Alignment Technol. Intell. Humans Organ. ISI 2015, pp. 135–137, 2015.

A. Kazemipour, B. Babadi, and M. Wu, “Sparse estimation of self-exciting point processes with application to LGN neural modeling,” 2014 IEEE Glob. Conf. Signal Inf. Process. Glob. 2014, pp. 478–482, 2014.

I. M. Toke, “An Introduction to Hawkes Processes with Applications to Finance,” pp. 1–92, 2011.

G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita, “Self-Exciting Point Process Modeling of Crime,” J. Am. Stat. Assoc., vol. 106, no. 493, pp. 100–108, 2011.

R. D. Peng, “Multi-dimensional point process models in r,” J. Stat. Softw., vol. 8, no. 16, pp. 1–27, 2003.

Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec, “SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity,” Kdd, p. 10, 2015.

R. Kobayashi and R. Lambiotte, “TiDeH: Time-Dependent Hawkes Process for Predicting Retweet Dynamics,” Icwsm 2016, no. ICWSM, pp. 1–11, 2016.

D. Agarwal, B.-C. Chen, and P. Elango, “Spatio-temporal models for estimating click-through rate,” Proc. 18th Int. Conf. World wide web WWW 09, vol. 6, no. 1, p. 21, 2009.

J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec, “Can cascades be predicted?,” Proc. 23rd Int. Conf. World wide web, pp. 925–936, 2014.

E. Bakshy, J. Hofman, W. Mason, and D. Watts, “Everyone’s an influencer: quantifying influence on twitter,” Proc. fourth ACM Int. Conf. Web search data Min. SE - WSDM ’11, pp. 65–74, 2011.

T. Gottron and A. C. Alhadi, “Bad News Travel Fast : A Content-based Analysis of Interestingness on Twitter,” WebSci, pp. 1–7, 2011.

S. Petrovic, M. Osborne, and V. Lavrenko, “Rt to win! predicting message propagation in twitter,” Proc. Fifth Int. Conf. Weblogs Soc. Media - ICWSM ’11, pp. 586–589, 2011.

T. Liniger, “Multivariate Hawkes Processes,” Ph.D Thesis, no. 18403, pp. 1–279, 2009.

E. Bacry, S. Delattre, M. Hoffmann, and J. F. Muzy, “Modeling microstructure noise using Hawkes processes,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., pp. 5740–5743, 2011.

A. Baddeley, “Spatial Point Processes and their Applications,” Lect. Notes Math. 1892, vol. 3, pp. 1–75, 2007.

N. Du, G. Tech, M. Gomez-rodriguez, and G. Tech, “Recurrent Marked Temporal Point Processes : Embedding Event History to Vector.”

F. P. Schoenberg, “A Naturally Arising Self-correcting Point Process,” 2000.

S. Yang and H. Zha, “Mixture of Mutually Exciting Processes for Viral Diffusion,” J. Mach. Learn. Res., vol. 28, no. 2, pp. 1–9, 2013.

P. J. Diggle, “Spatio-temporal Point Processes: Methods and Applications,” no. June 2005, 2005.

a. Fauth and C. a. Tudor, “Modeling First Line Of An Order Book With Multivariate Marked Point Processes,” pp. 1–30, 2012.

T. Ozaki, “Maximum Likelihood Estimation of Hawkes Self Exciting Point Processes,” Science (80-. )., pp. 145–155, 1979.

D. Marsan and O. Lengliné, “Extending earthquake’ reach through cascading,” Science (80-. )., vol. 319, no. 2008, p. 1076, 2008.

P. Taylor, J. Zhuang, Y. Ogata, and D. V. Jones, “Stochastic Declustering of Space-Time Earthquake Occurrences Stochastic Declustering of Space-Time,” J. Am. Stat. Assoc., vol. 97:458, no. January 2013, pp. 369–380, 2011.

E. Lewis, G. Mohler, P. J. Brantingham, and A. L. Bertozzi, “Self-exciting point process models of civilian deaths in Iraq,” Secur. J., vol. 25, pp. 244–264, 2012.

V. Chavez-Demoulin, A. Davison, and A. J. McNeil, “Estimating value-at-risk: a point process approach,” Quant. Financ., vol. 5, no. 2, pp. 227–234, 2005.

Y. Aït-sahalia, J. Cacho-diaz, and R. J. A. Laeven, “Modeling Financial Contagion Using Mutually Exciting Jump Processes ∗,” vol. 850533, 2013.

Y. Matsubara and C. Faloutsos, “Rise and Fall Patterns of Information Diffusion : Model and Implications,” Kdd, pp. 1–9, 2012.

S. Gao, J. Ma, and Z. Chen, “Modeling and Predicting Retweeting Dynamics on Microblogging Platforms,” Proc. Eighth ACM Int. Conf. Web Search Data Min. - WSDM ’15, no. iii, pp. 107–116, 2015.

R. Crane and D. Sornette, “Robust dynamic classes revealed by measuring the response function of a social system,” Proc. Natl. Acad. Sci., vol. 105, no. 41, pp. 15649–15653, 2008.

L. Xu, J. A. Duan, and A. Whinston, “Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion,” Manage. Sci., vol. 60, no. 6, pp. 1392–1412, 2012.


Refbacks

  • There are currently no refbacks.