ANALISIS DAN PERANCANGAN IDENTIFIKASI SERTA VERIFIKASI TANDA TANGAN STATIK MENGGUNAKAN BACKPROPAGATION DAN ALIHRAGAM WAVELET
Abstract
Tanda tangan merupakan atribut biometrik yang penting dari seseorang atau individu yang dapat digunakan sebagai identitas. Penggunaan tanda tangan merupakan cara yang alami dan tradisional sebagai identitas yang sah. Hal ini membuat keberadaan tanda tangan menjadi sesuatu yang penting dan sensitif, oleh sebab itu tanda tangan memerlukan pengamanan supaya tidak disalahgunakan oleh pihak yang tidak bertanggung jawab. Berbagai pendekatan telah diusulkan dalam pengembangan identifikasi dan verifikasi tanda tangan untuk meminimalkan tindak kecurangan yaitu pemalsuan tanda tangan. Pada penelitian ini akan dibahas tentang analisis dan perancangan identifikasi serta verifikasi tanda tangan untuk menentukan keasliannya. Proses ini terdiri atas dua bagian utama meliputi fase pelatihan dan fase pengujian. Pada tahap pelatihan, citra tanda tangan dikenai beberapa proses yaitu threshold, alihragam Wavelet, kemudian diproses lagi dengan menggunakan thinning. Pelatihan dan pengujian tanda tangan akan dilatih dan diuji dengan menggunakan algoritma Backpropagation dan Jaringan Syaraf Tiruan (JST). Berdasarkan penelitian yang dilakukan, telah memberikan hasil berupa analisis dan perancangan yang tepat untuk pengenalan pola tanda tangan statik sehingga dapat meminimalkan tindak pemalsuan tanda tangan.
Full Text:
PDFReferences
Khamdi, M., Solo Pos. www.Solopos.com, 2013.
Choudhary, Nilesh Y., Patil, Rupal, “Signature Recognition & Verification System Using Back Propagation Neural Network”, International Jorunal of IT, Engineering and Applied Sciences Research (IJIEASR), vol. 2, no 1, pp.1-8, 2013.
Kumar, S., Raja, K. B., Chotary, R. K. & Pattanaik, S., “Offline Signature Verification Based on Fusion of Grid and Global Features Using Neural Networks”, International Journal of Engineering Science and Technology, vol. 2 , no 12, pp. 7035-7044, 2010
Kalera, M. K., Srihari, S. & Xu, A., “Offline Signature Verification and Identification Using Distance Statistics”, International Journal of Pattern Recognition and Artificial Intellegence, vol. 18, no 7,2004.
Haleem, M. G. A., George, L. E. & Bayti, H. M., “Fingerprint Recognition Using Haar Wavelet Transformation and Local Ridge Attributes Only”, International Journal of Advanced Research in Computer Science and Software Engineering, vol. 4, no 1, pp. 122- 130, 2014.
Garhawal, S. & Shukla, N., “A Study on Handwritten Signature Verification”, International Journal of Advanced Research in Computer Engineering & Technology (IJEARCET), vol. 2, no 8, pp. 2497-2503, 2013.
Alamoudi, O. Omar & Elfaki, M. S., “Offline Signature Verification Using Machine Vision”, Journal of Science & Technology, vol. 14, no 2, pp. 3-35, 2009.
Abdullah, A. A., & Shaharum, S. M., “Lung Cancer Cell Classification Mathod Using Artificial Neural Network”, Information Engineering Letters,vol. 2, no 1, pp. 48-57, 2012.
Basu, J. K., Bhattacharyya, D. & Kim, T., “ Use of Artificial Neural Network in Pattern Recognition”, International Journal of Software Engineering and Its Applications, vol. 4, no 2, pp. 40-42, 2010.
Bhulyan, A. H., Azad, I. & Uddin, K., “Image Processing for Skin Cancer Features Extraction”, International Journal of Scientific & Engineering Research, vol. 4, no 2, pp. 1-6, 2013.
Patil, S. A. & Kuchnaur, M. B., “Lung Cancer Classification Using Image Processing”, International Journal of Engineering and Innovative Technology (IJEAT), vol. 2, no 3, pp. 37-42, 2008.
Antonelli, A., Cappelli, R., Maio, D. & Maltoni, D., “Fake Finger Detection by Skin Distortion Analysis”, IEEE Transaction on Information Forensics and Security, vol. 1, no 3, pp. 360-373, 2006.
Ani, M. S. & Aloosi, W. M., “Biometric Fingerprint Recognition using Discrete Cosine Transform (DCT)”, International Journal of Computer, vol. 69, no 6, pp. 44-48, 2013.
Kisku, D. R., Gupta, P. & Sing, J. K., “Offline Signature Identification by Fusion of Multiple Classifiers Using Statistical Learning Theory”, International Journal of Security and Its Applications, vol. 4, no 3, pp. 35-45, 2010.
Bhattacharyya, D. & Kim, T., “Design of Artificial Neural Network for Handwritten Siganture Recognition”, International Journal of Computer and Communication, vol. 4, no 3, pp. 59-66, 2010.
Impedovo, D. & Pirlo, G., “Automatic Signature Verification The State of The Art”, IEEE Transactions On Systems, Man, and Cybernetics, vol. 38, no 5, pp. 609-635, 2008.
Jagna, A., & Kamakshiprasad, V., “New Parallel Binary Image Thinning Algorithm”, ARPN Journal of Engineering and Applied Sciences, vol. 5, no 4, pp. 64-67, 2010.
Kaur, K. & Sharma, M., “A Method for Binary Image Thinning using Gradient and Watershed Algorithm”, International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no 1, pp. 287-290, 2013.
Kosbatwar, S. P. & Pathan, S. K., “Pattern Association for Character Recognition by Back Propagation Algorithm Using Neural Network Approach”, International of Computer Science & Engineering Surey (IJCSES), vol. 3, no 1, pp. 127-134, 2012.
Sthapak, S., Khopade, M. & Kashid, C., “Artificial Neural Netework Based Signature Recognition & Verification”, International Journal of Emerging Technology and Advanced Engineering, vol. 3, no 2, pp. 205-207, 2009.
Patil, P. G. &Hegadi, R. S., “Offline Handwritten Signature Classification Using Wavelets and Support Vector Machines”, International Journal Engineering Science and Innovative Technology (IJESIT), vol. 2, no 4, pp. 537-578, 2013.
Saranya, P., Fatimakani, K., Kanchanadevi, P., Venkatesan, S., & Govindaraju, S., “A Survey on Wavelet Domain techniques for Image Super Resolution”, International Journal of Computer Science and Mobile Computing, vol. 3, no 3, pp. 235-243, 2014.
Dewan, U. & Ashraf, J., “Offline Signature Verification Using Neural Network”, International Journal of Computational Engineering & Management, vol. 15, no 4, pp. 50-54, 2012.
Refbacks
- There are currently no refbacks.