BIG DATA: INKONSISTENSI DATA DAN SOLUSINYA

Bawono Adi Sanjaya, Selo Sulistyo

Abstract


Produksi data dunia saat ini mengalami peningkatan eksponensial dari tahun ke tahun. Pertumbuhan volume data yang pesat seiring dengan transaksi data di internet yang terjadi secara masif, bervariasi, serta memiliki struktur yang kompleks ketika data masuk ke media penyimpanan dikenal dengan istilah big data. Big data datang dari berbagai sumber dan memiliki sifat yang heterogen. Karena sifatnya yang heterogen, data bisa saja mengalami ketidakkonsistenan. Data yang mengalami konflik sangat menyulitkan dalam analisis big data untuk pengambilan keputusan. Tulisan ini akan membahas tentang konflik atau inkonsistensi data dalam big data. Di bagian akhir akan dibahas tentang beberapa metode dan algoritma yang digunakan untuk menyelesaikan problem ini.


Full Text:

PDF

References


S. Sagiroglu and D. Sinanc, “Big Data: a Review”, in Collaboration Technologies and Systems (CTS) International Conference, pp. 42-47, May 20-24, 2013.

Intel IT Center, "Planning Guide: Getting Started with Hadoop", Steps IT Managers Can Take to Move Forward with Big Data Analytics, June 2012. http://www.intel.com/content/dam/www/public/us/en/documents/g uides/getting-started-with-hadoop-planning-guide.pdf

S. Singh and N. Singh, "Big Data Analytics", in 2012 International Conference on Communication, Information & Computing Technology Mumbai India, IEEE, October 2011.

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh and A.H. Byers, "Big data: The next frontier for innovation, competition, and productivity", McKinsey Global Institute, 2011. http://www.mckinsey.com/~/media/McKinsey/dotcom/Insights%2 0and%20pubs/MGI/Research/Technology%20and%20Innovation/ Big%20Data/MGI_big_data_full_report.ashx

W. W. Eckerson: “Data quality and the bottom line: achieving business success through a commitment to high quality data”. Data Warehousing Institute, 2002.

W. Fan and F. Geerts, “Foundations of data quality management”. Morgan & Claypool 2012.

T. Redman, “The impact of poor data quality on the typical enterprise”. Commun. ACM 1998.

B. Saha and D. Srivastava, "Data quality: The other face of Big Data", 2014 IEEE 30th International Conference on Data Engineering (ICDE), pp. 1294-1297, March 31 to April 4, 2014.

S. Sarsfield, “The butterfly effect of data quality”, The Fifth MIT Information Quality Industry Symposium, 2011.

I.A.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S.U. Khan, The Rise of Big Data on Cloud Computing: Review and Open Research Issues, Elsevier Information System, pp. 98-115, January, 2015.

P. Zikopoulos, K. Parasuraman, T. Deutsch, J. Giles, D. Corrigan, Harness the Power of Big Data The IBM Big Data Platform, McGraw Hill Professional, 2012.

J.J. Berman, Introduction, in: Principles of Big Data, Morgan Kaufmann, Boston, pp. xix–xxvi, 2013.

J. Tee: Handling the four ’V’s of big data: volume, velocity, variety,and veracity, TheServerSide.com, 2013.

Y. Zhai, Y.S. Ong, I.W. Tsang, “The Emerging Big Dimensionality”, IEEE Computational Intelligence Magazine, August, 2014.

A. Katal, M. Wazid, R.H. Goudar, “Big Data: Issues, Challenges, Tools and Good Practices”, Contemporary Computing (IC3) 2013 Sixth International Conference, pp. 404-409, August 8-10, 2013.

Analytics: The Real-World Use of Big Data, Executive Report, IBM Global Business Analytics and Optimization.

M. Chen, S. Mao, Y. Liu, “Big data: a survey”, Mob. Netw. Appl. 19 (2), pp. 1–39, 2014.

D. Zhang, “Inconsistencies in Big Data”, Cognitive Informatics & Cognitive Computing (ICCI*CC), 2013 12th IEEE International Conference, pp. 61-67, July 16-18, 2013.

K. Wang and W. Zhang, “Detecting Data Inconsistency for Multi Database”.

D. Zhang and M. Lu, “Inconsistency-induced learning for perpetual learners”, International Journal of Software Science and Computational Intelligence, Vol.3, No.4, pp.33-51, 2011.

D. Zhang, “i2Learning: perpetual learning through bias shifting”, in Proc. of the 24th International Conference on Software Engineering and Knowledge Engineering, pp. 249- 255, July, 2012.

D. Zhang and M. Lu, “Learning through Overcoming Inheritance Inconsistencies”, in Proc. of the 13th IEEE International Conference on Information Reuse and Integration, pp. 201-206, August, 2012.

X. Chu, I.F. Ilyas and P. Papotti, “Holistic data cleaning: putting violations into context”, ICDE, pp. 458-469, 2013.

M. Hadjieleftheriou and D. Srivastava, “Approximate string processing”, Foundations and Trends in Databases, pp. 267-402, 2011.


Refbacks

  • There are currently no refbacks.