KLASIFIKASI GELOMBANG OTAK UNTUK KEAMANAN MENGGUNAKAN METODE VOTING FEATURES INTERVAL 5 DAN DUA-TAHAP OTENTIKASI BIOMETRIK

Nur Rakhmad Setiawan, Noor Akhmad Setiawan, Hanung Adi Nugroho

Abstract


EEG merupakan suatu alat yang digunakan untuk melihat aktivitas kelistrikan pada otak manusia. Bentuk keluaran yang diterima EEG dikenal dengan gelombang otak. Pada perkembangannya gelombang otak tidak hanya dapat digunakan untuk hal medis saja namun dapat digunakan untuk hal lain seperti pendidikan, hiburan dan keamanan. Berbagai macam studi dan penelitian telah dilakukan untuk pengenalan pola gelombang otak yang ditujukan untuk keamanan atau otentikasi individu. Kekurangan yang didapatkan pada pengenalan pola sinyal EEG untuk otentikasi adalah masih perlu banyak penelitian mengenai pengenalan karakter pengganti password dan implementasi otentikasi pada aplikasi keamanan. Pada penelitian ini diusulkan suatu metode klasifikasi algoritme Voting Feature Interval 5 (VFI5) dan Otentikasi Dua-Tahap Biometrik dengan terlebih dahulu melalui proses ekstraksi ciri menggunakan metode Transformasi Wavelet. Menurut penemunya metode VFI5 mempunyai kemampuan komputasi lebih cepat daripada metode Bayes dan akurasinya lebih baik daripada metode KNearest Neighbor.


References


“Brainwave EEG Signal” NeuroSky, Inc., 2009.

N. Kannathal, U. R. Acharya, C. M. Lim, and P. K.

Sadasivan, “Characterization of EEG—A comparative

study,” Comput. Methods Programs Biomed., vol. 80, no. 1,

pp. 17–23, Oct. 2005.

L. Gerdes and L. Sung, “Brainwave Optimization (Highresolution,

Relational, Resonance-based

Electroencephalic Mirroring): A Noninvasive

Technology for Neurooscillatory

Calibration.”Brain State Technologies, 2010.

F. Wendling, K. Ansari-Asl, F. Bartolomei, and L.

Senhadji, “From EEG signals to brain connectivity: A

model-based evaluation of interdependence measures,” J.

Neurosci. Methods, vol. 183, no. 1, pp. 9–18, Sep. 2009.

M. R. Arab, A. A. Suratgar, and A. R. Ashtiani,

“Electroencephalogram signals processing for topographic

brain mapping and epilepsies classification,” Comput. Biol.

Med., vol. 40, no. 9, pp. 733–739, Sep. 2010.

L. M. Patnaik and O. K. Manyam, “Epileptic EEG detection

using neural networks and post-classification,” Comput.

Methods Programs Biomed., vol. 91, no. 2, pp. 100–109,

Aug. 2008.

M. Genisa, Y. Zulhamidah, and E. Syam, “Karakterisasi

dan Digitalisasi Frekuensi Signal EEG Penderita Epilepsi,”

Maj. Kesehat. Pharmamedika, vol. 2, no. 1, 2012. [8] K. suk Jung and Y. suk Choi, “Brain Wave and User Profile

based Learning Content Type Recom-mendation in

Interactive e-Learning Environment.”

J. Mostow, K. Chang, and J. Nelson, “Toward exploiting

EEG input in a reading tutor,” in Artificial Intelligence in

Education, 2011, pp. 230–237.

Y. Yasui, “A Brainwave Signal Measurement and Data

Processing Technique for Daily Life Applications,” 2009.

E. C. Djamal and H. A. Tjokronegoro, “Identifikasi dan

Klasifikasi Sinyal EEG terhadap Rangsangan Suara dengan

Ekstraksi Wavelet dan Spektral Daya,” ITB J. Sci. 37 1 69-

, 2005.

K. Mohanchandra, L. GM, P. Kambli, and V.

Krishnamurthy, “Using Brain Waves as New Biometric

Feature for Authenticating a Computer User in Real-Time,”

Int. J. Biom. Bioinforma. IJBB, vol. 7, no. 1, p. 49, 2013.

T. L. Huang and C. Charyton, “A COMPREHENSIVE

REVIEW OF THE PSYCHOLOGICAL EFFECTS OF

BRAINWAVE ENTRAINMENT,” Altern. Ther. Health

Med., vol. 14, no. 5, p. 38, Sep. 2008.

W. Barker and S. Burgwin, “Brain wave patterns

accompanying changes in sleep and wakefulness during

hypnosis,” Psychosom. Med., vol. 10, no. 6, pp. 317–326,

A. H. Gani, F. P. U. I. N. Syarif, and H. Jakarta, “Efek

Hypnotherapy dari Ibadah.” , 2007.

K. Crowley, A. Sliney, I. Pitt, and D. Murphy, “Evaluating

a Brain-Computer Interface to Categorise Human

Emotional Response,” 2010, pp. 276–278.

W. Xu, F. Gong, L. He, and M. Sarrafzadeh, Wearable

Assistive System Design for Fall Prevention. 2011.

J. Thorpe, P. C. Oorschot, and A. Somayaji, “Passthoughts:

Authenticating With Our Minds,” Apr. 2005.

J. Chuang, C. W. Hamilton Nguyen, and B. Johnson, “I

think, therefore i am: Usability and security of

authentication using brainwaves,” in Proceedings of the

Workshop on Usable Security, USEC, 2013, vol. 13.

R. Palaniappan, “TWO-STAGE BIOMETRIC

AUTHENTICATION METHOD USING THOUGHT

ACTIVITY BRAIN WAVES,” vol. 18, no. 1, pp. 59–66,

H. A. Guvenir, G. Demiroz, and N. Ilter, “Learning

differential diagnosis of erythemato-squamous diseases

using voting feature intervals,” Artif. Intell. Med., vol. 13,

pp. 147–165, 1998.

Gonzalez. R., Woods. R.E. , Digital Image Processing 2nd

Edition., Prentice Hall ., 2002

J. Han and M. Kamber, Data mining concepts and

techniques. Amsterdam; Boston; San Francisco, CA:

Elsevier ; Morgan Kaufmann, 2006.

H. A. Guvenir, S. Acar, G. Demiroz, and A. Cekin, “A

supervised machine learning algorithm for arrhythmia

analysis,” in Computers in Cardiology 1997, 1997, pp.

–436.

C. Ashby, A. Bhatia, F. Tenore, and J. Vogelstein, “Lowcost

electroencephalogram (EEG) based authentication,” in

Neural Engineering (NER), 2011 5th International

IEEE/EMBS Conference on, 2011, pp. 442–445.

C. R. Hema, M. P. Paulraj, and H. Kaur, “Brain signatures:

A modality for biometric authentication,” in International

Conference on Electronic Design, 2008. ICED 2008, 2008,

pp. 1–4.

J. Klonovs, C. K. Petersen, H. Olesen, and A. Hammershøj,

“Development of a Mobile EEG-based Biometric

Authentication System,” in WWRF Meeting.

S. Marcel and J. R. Millan, “Person Authentication Using

Brainwaves (EEG) and Maximum A Posteriori Model

Adaptation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

, no. 4, pp. 743–752, Apr. 2007.

C. He, “Person authentication using EEG brainwave

signals,” 2009.

A. Alkan, E. Koklukaya, and A. Subasi, “Automatic seizure

detection in EEG using logistic regression and artificial

neural network,” J. Neurosci. Meth [31] A. Subasi and E. Erçelebi, “Classification of EEG signals

using neural network and logistic regression,” Comput.

Methods Programs Biomed., vol. 78, no. 2, pp. 87–99, May

M. K. Kiymik, M. Akin, and A. Subasi, “Automatic

recognition of alertness level by using wavelet transform

and artificial neural network,” J. Neurosci. Methods, vol.

, no. 2, pp. 231–240, Oct. 2004.

U. Orhan, M. Hekim, and M. Ozer, “EEG signals

classification using the K-means clustering and a multilayer

perceptron neural network model,” Expert Syst. Appl., vol.

, no. 10, pp. 13475–13481, Sep. 2011.

K. Polat and S. Güneş, “Classification of epileptiform EEG

using a hybrid system based on decision tree classifier and

fast Fourier transform,” Appl. Math. Comput., vol. 187, no.

, pp. 1017–1026, Apr. 2007.

Siuly, Y. Li, and P. (Paul) Wen, “Clustering techniquebased

least square support vector machine for EEG signal

classification,” Comput. Methods Programs Biomed., vol.

, no. 3, pp. 358–372, Dec. 2011.

M. Poulos, M. RANGOUSSI, N. ALEXANDRIS, and A.

EVANGELOU, “On the use of EEG features towards

person identification via neural networks,” 2001.

“Principal Component Analysis.”,

http://www.fon.hum.uva.nl/praat/manual/Principal_compon

ent_analysis.html., accesed December 30, 2013.

J. F. D. Saa and M. S. Gutierrez, EEG Signal Classification

Using Power Spectral Features and linear Discriminant

Analysis: A Brain Computer Interface Application.

LACCEI, 2010.


Refbacks

  • There are currently no refbacks.