PENERAPAN ALGORITMA KNN PADA PREDIKSI PRODUKSI MINYAK MENTAH

Willmen TB Panjaitan

Abstract


Minyak mentah merupakan salah satu komoditas utama dalam dunia energi dan termasuk salah satu sumber daya alam yang tidak dapat diperbaharui. Menurut Energy Information Administration (EIA), dunia saat ini mengkonsumsi 85.640.000 barel minyak mentah setiap hari. Ini merupakan proporsi terbesar dari konsumsi energi dunia dibandingkan dengan sumber-sumber lain.

Pada penelitian kali ini akan dibahas mengenai penerapan salah satu metode datamining dalam proses prediksi produksi minyak mentah. Data set yang digunakan berasal dari EIA. Adapun metode yang digunakan yaitu K-Nearest Neighbor. Pengujian hasil dari prediksi menggunakan RMSE.

Hasil dari penelitian ini yaitu penerapan metode K-Nearest Neighbor sederhana dapat memprediksi produksi minyak mentah dengan K=2 untuk nilai RMSE dan absolute error.

 

Kata kunci: Energy Information Administration (EIA), K-Nearest Neighbor, RMSE, Absolute Error


Full Text:

PDF

References


J. Fleming and B. Ostdiek, “THE IMPACT OF ENERGY DERIVATIVES ON THE CRUDE OIL MARKET,” THE JAMES A.BAKER III INSTITUTE FOR PUBLIC POLICY OF RICE UNIVERSITY, 2008.

C. . Omekara, O. E. Okereke, K. . Ire, and C. . Okamgba, “ARIMA Modeling of Nigeria Crude Oil Production,” J. Energy Technol. Policy, vol. 5, no. 10, pp. 1–5, 2015.

L. Gabralla and A. Abraham, “Computational Modeling of Crude Oil Price Forecasting: A Review of Two Decades of Research,” Mirlabs.Org, vol. 5, pp. 729–740, 2013.

A. Pwasong and S. Sathasivam, “Forecasting crude oil production using quadratic regression and layer recurrent neural network models,” vol. 20001, p. 20001, 2016.

I. S. Nashawi, A. Malallah, and M. Al-Bisharah, “Forecasting world crude oil production using multicyclic Hubbert model,” Energy and Fuels, vol. 24, no. 3, pp. 1788–1800, 2010.

M. Kuhkan, “A Method to Improve the Accuracy of K-Nearest Neighbor Algorithm,” Int. J. Comput. Eng. Inf. Technol., vol. 8, no. 6, pp. 90–95, 2016.

N. Krisandi, B. Prihandono, and Helmi, “Algoritma K - Nearest Neighbor Dalam Klasifikasi Data Hasil Produksi Kelapa Sawit Pada PT. MINAMAS Kecamatan Parindu,” Bul. Ilm. Math.Stat.dan Ter., vol. 2, no. 1, pp. 33–38, 2013.

International Council on Clean Transportion, “An Introduction To Petroleum Refining and the Production of Ultra Low Sulfur Gasoline,” pp. 1–33, 2011.

T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014.

Prajesh P Anchalia, Kaushik Roy, “The k-Nearest Neighbor Algorithm Using MapReduce Paradigm”, Fifth International Conference on Intelligent System, Modeling and Simulation, 2014.

K. Ming Leung, “k-Nearest Neigbor Algorithm for Classification”, NYU Politechnic Scool of Enginering, 2007.

Xue Bao and Xin Guan, “A Method of predicting crude oil output based on RS-C4.5 Algorithm”, 3rd International Conference on Information Science and Control Engineering, ICISCE, 2016.


Refbacks

  • There are currently no refbacks.