ANALISIS DAN STUDI KOMPARATIF ALGORITMA KLASIFIKASI GENRE MUSIK
Abstract
Full Text:
PDFReferences
I. H. Witten, Data mining : practical machine learning tools and techniques, 3rd ed. Burlington: Morgan Kaufmann, 2011.
Florin Gorunescu, Data Mining: Concepts, Models and Techniques. Springer, 2011.
N. J. Hunt, N. Lennig, P. Mermeletein, and B. N. Reeeerch, “Stllable—based recognition,” no. 3, pp. 880–883, 1980.
T. Giannakopoulos, “PyAudioAnalysis: An open-source python library for audio signal analysis,” PLoS One, vol. 10, no. 12, pp. 1–17, 2015.
G. Tzanetakis, S. Member, and P. Cook, “Musical Genre Classification of Audio Signals,” vol. 10, no. 5, pp. 293–302, 2002.
F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2012.
B. K. Baniya, D. Ghimire, and J. Lee, “Automatic music genre classification using timbral texture and rhythmic content features,” Int. Conf. Adv. Commun. Technol. ICACT, vol. 2015–August, no. 3, pp. 434–443, 2015.
R. Ajoodha, R. Klein, and B. Rosman, “Single-labelled Music Genre Classification Using Content-Based Features,” 2015.
M. M. Panchwagh, “Music Genre Classification Using Data Mining Algorithm,” pp. 49–53, 2016.
C. N. Silla, A. L. Koerich, and C. A. A. Kaestner, “A Machine Learning Approach to Automatic Music Genre Classification,” J. Brazilian Comput. Soc., vol. 14, no. 3, pp. 7–18, 2008.
C. A. A. Jr, Carlos N Silla;Koerich, Alessandro L., Kaestner, “A Feature Selection Approach for Automatic Music Genre Classification,” Int. J. Semant. Comput., vol. 3, no. 2, pp. 183–208, 2009.
C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995.
L. Breiman, “RANDOM FORESTS,” pp. 1–35, 1999.
P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” no. October 2005, 2006.
J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Ann. Stat., vol. 29, p. 5, 2001
Refbacks
- There are currently no refbacks.