ANALISIS PENGARUH COGNITIVE TASK BERDASARKAN HASIL EKSTRAKSI CIRI GELOMBANG OTAK MENGGUNAKAN JARAK EUCLIDEAN

Ahmad Azhari

Abstract


Penggunaan gelombang otak sebagai media untuk mengotentikasi pengguna memiliki beberapa keunggulan dibandingkan sistem otentikasi biometrik lainnya seperti sidik jari atau iris scan. Hal ini disebabkan karena gelombang otak dan pikiran tidak dapat dibaca oleh orang lain. Penerapan tugas kognitif (cognitive task) pada studi dan penelitian bidang biometrika terutama terkait sinyal elektroensefalogram (EEG) memiliki peran sebagai pemicu untuk memperoleh tanggapan spesifik dari otak manusia. Dalam perkembangan teknologi biometrika kognitif (cognitive biometrics), tugas kognitif dikembangkan berdasarkan penggabungan persepsi manusia dan karakteristik psikologis serta penggunaan database pada komputer melalui antarmuka brain-machine. Penelitian ini dilakukan untuk mengukur pengaruh dominan dari tugas-tugas kognitif yang diberikan sebagai stimulus. Ekstraksi ciri dilakukan dengan penerapan statististik berupa nilai rata-rata, deviasi standar, skewness, kurtosis, dan entropi. Fitur-fitur tersebut selanjutnya dianalisis untuk mendapatkan sebaran data menggunakan jarak Euclidean. Hasil yang diperoleh dari pengujian menunjukkan ada tiga komponen yang memiliki pengaruh dominan terhadap terbentuknya ciri individu yakni tugas simulasi menggerakkan jari (finger), tugas mengidentifikasi warna (color) dan tugas membayangkan wajah (face)

Full Text:

PDF

References


Z. H. Murat, M. N. Taib, S. Lias, R. S. S. A. Kadir, N. Sulaiman, and M. Mustafa, “EEG Analysis for Brainwave Balancing Index (BBI),” 2010, pp. 389–393.

A. Azhari, A. Susanto, and I. Soesanti, “Studi Perbandingan: Cognitive Task Berdasarkan Hasil Ekstraksi Ciri Gelombang Otak.pdf,” presented at the Seminar Nasional Teknologi Informasi dan Multimedia, Yogyakarta, 2015, vol. 3.1, p. 7.

A. Azhari, “Ekstraksi Ciri Gelombang Otak Menggunakan Alat Neurosky Mindset Berbasis Korelasi Silang.pdf,” Universitas Gadjah Mada, Yogyakarta, 2015.

D. Putra, Pengolahan Citra Digital. Penerbit Andi, 2010.

D. Putra, Sistem Biometrika. Andi Offset, 2009.

D. Putra and K. Gede, “Sistem Verifikasi Biometrika Telapak Tangan dengan Metode Dimensi Fraktal dan Lacunarity,” Maj. Ilm. Teknol. Elektro, vol. 8, no. 2, 2012.

J. Klonovs, C. K. Petersen, H. Olesen, and A. Hammershøj, “Development of a Mobile EEG-Based Feature Extraction and Classification System for Biometric Authentication.pdf,” Aalborg University Copenhagen, 2012.

E. Yulianto, “Spesifikasi Ciri Sinyal EEG Untuk Perintah Pergerakan Motorik Berbasis Gelombang Singkat Khusus Berdasarkan Hasil Ekstraksi Ciri,” Universitas Gadjah Mada, 2013.

C. F. H. Putra, “Analisis Citra Otak Pada Color-Task Dan Word-Task Dalam Stroop Task Dengan Menggunakan Electroencephalography (EEG),” Universitas Gadjah Mada, Yogyakarta, 2014.

N. Inc., Brainwave Signal (EEG) of Neurosky, Inc. Neurosky, Inc., 2009.

I. Jayarathne, M. Cohen, and S. Amarakeerthi, “BrainID: Development of an EEG-based biometric authentication system,” in Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2016 IEEE 7th Annual, 2016, pp. 1–6.

P. Ackermann, C. Kohlschein, J. Á. Bitsch, K. Wehrle, and S. Jeschke, “EEG-based automatic emotion recognition: Feature extraction, selection and classification methods,” in e-Health Networking, Applications and Services (Healthcom), 2016 IEEE 18th International Conference on, 2016, pp. 1–6.

A. A. Ghodake and S. D. Shelke, “Brain controlled home automation system,” in Intelligent Systems and Control (ISCO), 2016 10th International Conference on, 2016, pp. 1–4.

Z. Pang, J. Li, H. Ji, and M. Li, “A new approach for EEG feature extraction for detecting error-related potentials,” in Progress in Electromagnetic Research Symposium (PIERS), 2016, pp. 3595–3597.

J. Katona, I. Farkas, T. Ujbanyi, P. Dukan, and A. Kovari, “Evaluation of the NeuroSky MindFlex EEG headset brain waves data,” in Applied Machine Intelligence and Informatics (SAMI), 2014 IEEE 12th International Symposium on, 2014, pp. 91–94.

B. Trowbridge, C. Rodriguez, J. Prine, M. Holzemer, J. McCormack, and R. Integlia, “Gaming, fitness, and relaxation,” in Games Entertainment Media Conference (GEM), 2015 IEEE, 2015, pp. 1–1.

M. Varela, “Raw EEG signal processing for BCI control based on voluntary eye blinks,” in 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), 2015, pp. 1–6.

Y. Yoshimura et al., “The Brain’s Response to the Human Voice Depends on the Incidence of Autistic Traits in the General Population,” PLoS ONE, vol. 8, no. 11, p. e80126, Nov. 2013.

D. Bright, A. Nair, D. Salvekar, and S. Bhisikar, “EEG-based brain controlled prosthetic arm,” in Advances in Signal Processing (CASP), Conference on, 2016, pp. 479–483.

A. Patil, C. Deshmukh, and A. R. Panat, “Feature extraction of EEG for emotion recognition using Hjorth features and higher order crossings,” in Advances in Signal Processing (CASP), Conference on, 2016, pp. 429–434.

M. Diykh, Y. Li, and P. Wen, “EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 11, pp. 1159–1168, Nov. 2016.

G. B. Remijn, E. Hasuo, H. Fujihira, and S. Morimoto, “An introduction to the measurement of auditory event-related potentials (ERPs),” Acoust. Sci. Technol., vol. 35, no. 5, pp. 229–242, 2014.

B. Johnson, T. Maillart, and J. Chuang, “My thoughts are not your thoughts,” 2014, pp. 1329–1338.

R. Zafar, A. S. Malik, H. U. Amin, N. Kamel, S. Dass, and R. F. Ahmad, “EEG spectral analysis during complex cognitive task at occipital,” in Biomedical Engineering and Sciences (IECBES), 2014 IEEE Conference on, 2014, pp. 907–910.

J. Zhang, Z. Yin, and R. Wang, “Pattern Classification of Instantaneous Cognitive Task-load Through GMM Clustering, Laplacian Eigenmap and Ensemble SVMs,” IEEE/ACM Trans. Comput. Biol. Bioinform., pp. 1–1, 2016.

Y. Zhong and Z. Jianhua, “Recognition of Cognitive Task Load levels using single channel EEG and Stacked Denoising Autoencoder.pdf,” in Proceedings of the 35th Chinese Control Conference, 2016, pp. 3907–3912.

S. Datta, P. Rakshit, A. Konar, and A. K. Nagar, “Selecting the optimal EEG electrode positions for a cognitive task using an artificial bee colony with adaptive scale factor optimization algorithm,” in 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, pp. 2748–2755.

R. F. Ahmad, A. S. Malik, N. Kamel, F. Reza, and A. H. A. Karim, “Simultaneous EEG-fMRI data acquisition during cognitive task,” in Intelligent and Advanced Systems (ICIAS), 2014 5th International Conference on, 2014, pp. 1–4.

A. Saha, A. Konar, P. Das, B. S. Bhattacharya, and A. K. Nagar, “Data-point and feature selection of motor imagery EEG signals for neural classification of cognitive tasks in car-driving,” in 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8.


Refbacks

  • There are currently no refbacks.