ANALISIS DAN PERANCANGAN BASIS DATA PEMETAAN PENYAKIT PADA KAB KLATEN

Moenawar Kholil¹⁾, M.Mujiono ²⁾, Darno³⁾, Hari Agustiyo ^{4),} Nofriagara Davit Harnawan⁵⁾

1) Universitas Widya Dharma Klaten
2) Akademi Komunitas Negeri Putra Sang Fajar Blitar
3) 4)5) Magister Teknik Informatika STMIK AMIKOM Yogyakarta
1) Jln. Ki Hajar Dewantara, Klaten, Jawa Tengah
2) Jl dr Sutomo No 51 Kota Blitar

^{3) 4)5)} Jl Ring road Utara, Condongcatur, Sleman, Yogyakarta 55281

Email: moenawarkholil@gmail.com ¹⁾,jonokademangan@gmail.com ²⁾, <u>Dr.noch@yahoo.co.id</u> ³⁾, <u>Hariagustiyo@gmail.com</u> ⁴⁾, nofriagara@gmail.com ⁵⁾

Abstrak

Dalam pembuatan sebuah sistem, dibutuhkan perancangan basis data yang baik dan tepat, guna mendukung proses tersebut. Dalam penelitian ini fokus penelitian adalah tentang pembuatan basis data untuk menangani pemetaan penyakit di Kabupaten Klaten.

Metode pembuatan basis data ini dimulai dari penentuan dasar hukum, pelaksanaan observasi dan wawancara untuk melihat tipe relasional antar pengguna basis data, menentukan entitas,atribut serta tipe datanya, untuk dijadikan ERD, langkah selanjutnya menentukan constraint dari tiap entitas yang ada, dan analisis data yang didapatkan dari basis data.

Hasil penelitian iniberupa sebuah perancangan basis data sebagai acuan pembuatan sistem infomasi pemetaan penyakit di kabupaten klaten

Kata kunci:Basis data, puskesmas,pemetaan,penyakit

1. Pendahuluan

Kesehatan adalah salah satu dari unsur hak asasi manusia dan merupakan salah satu indikator kesejahteraaan yang merupakan amanat dari Undangdasar 1945, pemerintah berkewajiban menyediakan sumber daya di bidang kesehatan yang dapat digunakan sebagai upaya meningkatkan kesehatan masyarakat. Salah satu sumber daya kesehatan menurut UU no 36 tahun 2009 tentang kesehatan adalah menyediakan akses untuk informasi, edukasi dan fasilitas kesehatan kepada masyarakat [1]. Pada pasal 168 disebutkan tentang informasi kesehatan dibutuhkan untuk mencari data yang valid dan teratur yang dapat digunakan sebagai bahan pembuat keputusan pemerintah.

Dalam upaya mendukung peningkatan kesehatan masyarakat berupa informasi kesehatan, pemerintah mengeluarkan peraturan pemerintah no 46 tahun 2014 tentang sistem informasi kesehatan[2]. Sistem informasi kesehatan merupakan seperangkat aturan atau sistem yang saling berkaitan dan dikelola secara terpadu yang hasilnya dapat mengarahkan suatu

keputusan yang mendukung upaya pembangunan kesehatan.

Seiring dengan era otonomi daerah yang mewajibkan pembagian wewenang antara pemerintah pusat dan daerah maka pengelolaan sistem informasi kesehatan juga dikelola secara berjenjang antara pemerintah pusat dan daerah. Menurut PP no 46 tahun 2014 pengelolaan sistem informasi kesehatan dibagi menjadi beberapa tingkatan, pertama sistem informasi kesehatan nasional, sistem informasi kesehatan provinsi, sistem informasi kesehatan kabupaten/kota, yang terakhir sistem informasi kesehatan di fasilitas pelayanan kesehatan[2]. Di dalam sistem informasi kesehatan di fasilitas kesehatan ini data dasar yang dibutuhkan oleh sistem informasi kesehatan yang ada di atasnya didapat.

Fokus masalah yang akan diteliti pada penelitian ini adalah tentang sistem informasi kesehatan di pelayanan kesehatan pertama, sedangkan hasil data yang didapat dari puskesmas dijadikan bahan analisis pada tingkat kabupaten. Sesuai dengan peraturan menteri kesehatan no 75 tahun 2014 tentang pusat kesehatan masyarakat 43 dan 44 bahwa pada puskesmas harus menyelenggarakan sistem informasi kesehatan yang hasilnya dilaporkan secara berkala kepada dinas kesehatan kabupaten/kota[3].

Laporan yang didapat dari puskesmas dapat digunakan oleh dinas kesehatan kabupaten/kota sebagai bahan analisis dan masukan dalam menentukan arah suatu keputusan seperti proses manajemen pelayanan kesehatan dan manajemen pembangunan kesehatan.

Pada penelitian fokus daerah yang akan diambil adalah di Kabupaten Klaten, dari hasil observasi dan wawancara yang dilakukan di Dinas Kesehatan Kabupaten Klaten adalah pada saat ini, proses pelaporan dari puskesmas ke Dinas kesehatan masih belum menggunakan sebuah sistem infromasi kesehatan, sehingga data-data yang dibutuhkan untuk bahan analisis masih belum tersedia secara *real time*. Pada kondisi tersebut mengakibatkan proses pengambilan keputusan dikhawatirkan belum bisa dilakukan secara maksimal.

Proses yang terjadi di Kabupaten saat ini (1) Puskesmas di wajibkan melakukan pelaporan penyakit yang terdapat pada puskesmas tersebut secara rutin setiap bulan sebelum tanggal 10. (2) Dinas kesehatan wajib melakukan perekapanan hasil dari laporan puskesmas tersebut untuk dapat menentukan 10 besar penyakit yang terjadi pada kabupaten klaten. (3) Pelaporan dari puskesmas ke dinas kesehatan dan pengumpulan laporan masih bersifat manual.

Dalam hal penyampaian informasi inilah terjadi kendala yang disebabkan keterlambatan penyampaian laporan yang menyebabkan data yang didapat tidak terbaru dan *real time* sehingga pengambilan kebijakan yang didasarkan data tersebut menjadi tidak akurat. Maka dari itu diperlukan suatu mekanisme yang dapat membantu agar penyampaian laporan bisa tepat waktu dengan carayang mudah dan transparan [4].

Pada penelitian ini fokus penjabaran lebih kepada proses perancangan basis data secara terperinci, diawali dari penentuan entitas, perancangan *entitity relationship diagram*, relasi antar tabel, struktur tabel beserta *constraint* pada atribut yang diperlukan, serta beberapa contoh hasil analisis yang didapat dari basis data yang telah dibuat.

Hasil dari penelitian ini diharapkan dapat membantu untuk pengembangan sebuah sistem informasi yang sesuai dengan basis data yang telah di buat.

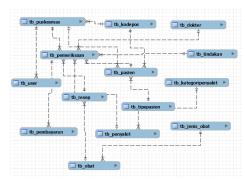
2. Pembahasan

Dari hasil observasi dan wawancara dengan Dinas kesehatan Kabupaten Klaten diapat diambil kesimpulan, bahwa pengguna membutuhkan sebuah sistem informasi yang dapat (a) menampilkan informasi penyabaran penyakit yang ada di Kabupaten Klaten (b) menampilkan informasi penyakit secara berkala mulai dari per-hari, bulan dan tahun (c) menampilkan informasi pengelompokan penyakit menular dan tidak menular yang terjadi secara rinci.

Pada kenyataanya kebutuhan informasi tersebut erat kaitannya dengan pelaksanaan pelayanan yang ada di puskesmas, semua informasi yang dibutuhkan tersebut menjadi valid atau tidaknya tergantung dengan sistem yang ada di puskesmas. Oleh karena itu penggunaan sistem informasi kesehatan di puskesmas mutlak diperlukan. Jadi pada penelitian ini titik berat perancangan basis data di tujukan pada pelayanan kesehatan di puskesmas, sedangkan proses pemetaan didapatkan dengan seleksi data-data yang ada pada puskesmas. Penerapan basis data ini di kelola oleh dinas kesehatan dan sumber datanya dimasukkan dari puskesmas.


Dari identifikasi tipe relasional dari proses bisnis yang terjadi, telah didapatkan aktor yang berperan dalam penggunaan basi data, yaitu: puskesmas, pasien, petugas pendaftaran di puskesmas, petugas rekam medis di puskesmas, petugas dinas kesehatan, kemudian dapat diimplementasikan ke dalam *entitity relationship diagram* (ERD) dan pada tahap selanjutnya di masukkan ke dalam relasi database. Sebelum tahap pembuatan ERD untuk mempermudah perancangan ditentukan dulu entitas yang akan tersebut beserta atributnya.

Tabel 1. Identifikasi Entitas dan Atribut


No	Entitas	Atribut
1	Dokter	id dokter,nama_dokter,alamat,telp
2	Pasien	id pasien,nama,alamat,kelamin,telp, tgl_lahir,goldar
3	Obat	id_obat,nama,keterangan,harga_bpjs, harga_umum,
4	Penyakit	id penyakit,nama
5	Kode pos	id kodepos,kelurahan,kecamatan, provinsi,
6	Pembayaran	id_pembayaran,total_pembayaran
7	Puskesmas	Idpuskesmas,nama,tpe_puskesmas
8	Resep	id resep
9	Tindakan	id_tindakan,nama,biaya
10	Tipe pasien	id tipepasien,keterangan
11	Periksa	id_pemeriksaan,tgl

Pada tabel 1 dapat dilihat hasil dari analisis entitias yang didapat, pada tahap ini telah ditentukan yang menjadi atribut serta *primary key* tiap tabel. Untuk atribut *primary key* ditandai dengan garis bawah pada nama atribut. Dari hasil tabel tabel yang telah dijabarkan diatas, kemudian dilakukan perancangan ERD

Gambar 1. Entity Relationship Diagram

Pada gambar 1 merupakan hasil dari pembuatan ERD menunjukkan relasi model data dari basis data. Pada tahap selanjutnya dilakukan perancangan relasi antar tabel adalah hasil dari model ERD yang telah dibuat.

Gambar 2. Relasi Antar tabel

Dari gambar 2 menunjukkan hasil dari pemodelan ERD yang berbentuk relasi antar tabel, relasi ini terdiri dari 14 tabel yang berasal dari entitas yang sudah dirancang sebelumnya, selain itu pada tipe hubungan N to N dari setiap entitas juga dibentuk menjadi sebuah tabel baru dengan menambahkan sebuah primary key pada entitas yang saling menghubungkan. Pada hubungan 1 to N atau sebaliknya tidak dirubah menjadi tabel baru, namun dengan menambahkan primary key yang derajat kardinalitasnya lebih tinggi. Contohnya pada tabel pasien dengan tabel tb_kodepos, pada tabel pasien ditambahkan primary key yang berasal dari tabel tb_kodepos.

Dari hasil relasi tabel yang telah ditampilkan diatas, langkah selanjutnya adalah diperinci dengan membuat struktur tabel, sehingga akan terlihat komponen komponen yang ada pada tabel seperti jenis data dan sizenya.

Tabel 2.Struktur tabel Dokter

No	Kolom	Tipe data	ukuran	Constraint
1	id_dokter	Char	8	Primary key, not null
2	nama_dokter	Varchar	30	Not null
3	alamat	Varchar	50	Not null
4	telp	Varchar	12	Not null

Pada tabel 2, kolom id_dokter dibuat dengan tipe data char(8) karena seluruh id_dokter telah ditentukan dengan format 8 karakter, sedang kolom lainya dibuat dengan tipe data varchar karena kolom lainnya mempunyai panjang karakter yang berbeda beda. Pemberian batasan jumlah karakter ini digunakan agar lebih menghemat *space* basis data dan lebih efisien.

Tabel 3.Struktur tabel tb_kodepos

			-	
No	Kolom	Tipe data	ukuran	Constraint
1	id_kodepos	Char	5	Primary key, not null
2	Kelurahan	Varchar	15	Not null
3	Kecamatan	Varchar	15	Not null
4	Provinsi	Varchar	20	Not null

Pada tabel 3, kolom id_kodepos t dibuat dengan tipe data char(5) karena seluruh id_kategoripenyakit telah ditentukan dengan format 8 karakter, sedang kolom lainnya dibuat dengan tipe data varchar karena kolom ini mempunyai panjang karakter yang berbeda beda.

Tabel 4.Struktur tabel tb_obat

Tuber Histraktar taber to_ooat				
No	Kolom	Tipe data	ukuran	Constraint
1	id_obat	Char	8	Primary key, not null
2	Nama	Varchar	20	Not null
3	Keterangan	Varchar	50	Not null
4	Harga_bpjs	Int	9	Not null
5	Harga_umum	Int	9	Not null
6	id_jenisobat	Char	8	Foreign key, not null, update cascade, delete no acion

Pada tabel 4, kolom id_obat dibuat dengan tipe data char(8) karena seluruh id_obat telah ditentukan dengan format 8 karakter, sedang kolom harga_bpjs dan harga_umum dibuat dengan tipe data int karena kolom ini berisi bilangan riil dan tidak mengandung bilangan pecahan, serta kolom ini akan digunakan untuk operasi matematika.

Tabel 5.Struktur tabel pasien

	Tabel 5.Struktur tabel pasien				
No	Kolom	Tipe data	ukuran	Constraint	
1	id_pasien	Char	8	Primary key, not null	
2	Nama	Varchar	20	Not null	
3	alamat	Varchar	50	Not null	
4	kelamin	char	1	Not null, CHECK, only L/P	
5	telp	Varchar	15	Not null	
6	tgl_lahir	Datetime	8	Not null	
7	id_kodepos	Char	5	Foreign key, not null, update cascade, delete no acion	
8	id_tipepasien	Char	2	Foreign key, not null, update cascade,	

STMIK AMIKOM Yogyakarta, 4 Februari 2017

				delete no acion
9	Idpuskesmas	Char	2	Foreign key, not null, update cascade, delete no acion
10	goldar	Char	1	Not null, CHECK, only A/B/AB/O

Pada tabel 5, kolom id_pasien dibuat dengan tipe data char(8) karena seluruh id_pasien telah ditentukan dengan format 8 karakter, sedang kolom kelamin dan goldar dibuat dengan tipe data char(1) dikeranakan pada kolom kelamin isi datanya hanya L atau P dan kolom goldar isi datanya hanya A,B,AB dan O.

Tabel 6.Struktur tabel tb_pembayaran

No	Kolom	Tipe data	ukuran	Constraint
1	id_pem bayaran	Char	8	Primary key, not null
2	Total_p embaya ran	Int	8	Not null
3	Id_pem eriksaa n	Char	8	Foreign key, not null, update cascade, delete no acion

Pada tabel 6, kolom id_pembayaran dibuat dengan tipe data char(8) karena seluruh id_pembayaran telah ditentukan dengan format 8 karakter.

Tabel 7.Struktur tabel tb_pemeriksaan

No	Kolom	Tipe data	ukuran	Constraint
1	id_pemeriksaan	Char	8	Primary key, not null
2	Tgl	Datetime	8	Not null
3	Id_dokter	Char	8	Foreign key, not null, update cascade, delete no acion
4	id_pasien	Char	8	Foreign key, not null, update cascade,

No	Kolom	Tipe data	ukuran	Constraint
				delete no acion
5	Id_penyakit	Char	8	Foreign key, not null, update cascade, delete no acion
6	id_tindakan	Char	8	Foreign key, not null, update cascade, delete no acion
7	Id_resep	Char	8	Foreign key, not null, update cascade, delete no acion

Pada tabel 7 kolom id_pemeriksaan dibuat dengan tipe data char(8) karena seluruh id_pasien telah ditentukan dengan format 8 karakter, sedangkan pada kolom tgl dibuat datetime karena isi dari kolom tersebut berformat tanggal, sedangkan kolom lainnya merupakan primary key dari tabel lain, sehingga tipe datanya mengikuti dari tipe data pada tabel asal

Tabel 8.Struktur tabel tb_penyakit

	Tabel 6.5tiul	ttar taber to	<u>_penjami</u>	•
No	Kolom	Tipe data	ukuran	Constraint
1	id_penyakit	Char	8	Primary key, not null
2	Nama	Varchar	20	Not null
3	Id_kategoripenyaki t	Char	6	Foreign key, not null, update cascade, delete no acion

Pada tabel 8 kolom id_penyakit dibuat dengan tipe data char(8) karena seluruh id_penyakit telah ditentukan dengan format 8 karakter, sedangkan kolom Id_kategoripenyakit merupakan primary key dari tabel lain.

Tabel 9.Struktur tabel tb_puskesmas

	Tabel 9.Strukt	ur tabel tb_	_puskesma	as
No	Kolom	Tipe data	ukuran	Constraint
1	id_puskesmas	Char	2	Primary key, not null
2	Nama_puskesmas	Varchar	20	Not null
3	Tpe_puskesmas	Varchar	50	Not null
4	Id_kodepos	Char	5	Foreign

STMIK AMIKOM Yogyakarta, 4 Februari 2017

		key, not
		key, not null,
		update cascade,
		cascade,
		delete no
		acion

Pada tabel 9 kolom id_peuskesmas dibuat dengan tipe data char(2) karena seluruh id_peuskesmas telah ditentukan dengan format 2 karakter, sedangkan pada kolom Nama_puskesmas dan Tpe_puskesmas menggunakan varchar karena kolom ini mempunyai panjang karakter yang berbeda beda, sedangkan kolom Id_kodepos merupakan primary key dari tabel lain, sehingga tipe datanya mengikuti dari tipe data pada tabel asal.

Tabel 10. Struktur tabel the resen-

No	Kolom	Tipe data	ukuran	Constraint
1	id_resep	Char	8	Primary key, not null
2	Id_obat	Char	8	Foreign key, not null, update cascade, delete no acion

Pada tabel 10 kolom id_resep dibuat dengan tipe data char(8) karena seluruh id_resep telah ditentukan dengan format 8 karakter, sedangkan kolom Id_obat merupakan primary key dari tabel lain, sehingga tipe datanya mengikuti dari tipe data pada tabel asal.

Tabel 11.Struktur tabel tb_ tindakan

No	Kolom	Tipe data	ukuran	Constraint			
1	id_tindakan	Char	8	Primary key, not null			
2	Nama	Varchar	20	Not null			
3	Biaya	Int	6	Not null			

Pada tabel 11 kolom id_tindakan dibuat dengan tipe data char(8) karena seluruh id_tindakan telah ditentukan dengan format 8 karakter, sedangkan kolom biaya data int karena kolom ini berisi bilangan riil dan tidak mengandung bilangan pecahan, serta kolom ini akan digunakan untuk operasi matematika.

Tabel 12.Struktur tabel tb_tipepasien

No	Kolom	Tipe data	ukuran	Constraint
1	id_tipepasien	Char	8	Primary key, not null
2	Keterangan	Varchar	50	Not null

Pada tabel 12 kolom id_tipepasien dibuat dengan tipe data char(8) karena seluruh id_tipepasien telah ditentukan dengan format 8 karakter, sedangkan

pada kolom keterangan menggunakan varchar(50) karena kolom ini mempunyai panjang karakter yang berbeda beda.

Untuk menjaga konsistensi data sehingga pengguna harus memasukkan data yang sesuai dengan persyaratan maka harus dilakukan penetapan constraint, dimana dengan constraint dilakukan mendefisinikan aturan terhadap kolom dalam tabel. Apabila disebutkan On Update Cascade, berarti pengeditan tidak dapat dilakukan dan ON delete No Action, maka penghapusan tidak diijinkan. Apabila dibutuhkan pengubahan/penghapusan di tabel induk yang telah dirujuk dengan foreign key yang disebutkan dengan On Update Cascade On Delete No Action, maka sebelum penghapusan/pengubahan, data terkait pada tabel yang ada foreign keynya tersebut harus dihapus terlebih dahulu[5].

Untuk menunjukkan fungsi dari *constraint* maka dilakukan percobaan tabel yang diberikan aturan *constraint*, pada percobaan ini tabel yang akan digunakan pada adalah tabel tb_pasien ,saat ada perubahan pada id_tipepasien di tabel awal, maka data pada tabel tb_pasien akan selalu menyesuaikan, sedangkan penghapusan data pada tabel asal tidak diperbolehkan.

Gambar 3. Data awal tb_pasien

Pada gambar 3 dapat dilihat kondisi awal sebelum dilakukan pengetasan, pengetesan dilakukan dengan melakukan perubahan id_tipepasien menjadi 12 maka pada tb_pasien akan menyesuaikan.

Gambar 4. Hasil pengetasan pada tb_pasien Pada gambar 4 hasil dari pengetesan id_tipepasien akan berubah sesuai dengan id_tipepasien di tabel asal.

Dari hasil perancangan basis data yang telah dilakukan, dengan menggunakan sistem basis data relasional maka analisis data dapat mudah dilakukan dengan menggunakan perintah SQL. Misalnya untuk melihat jumlah kunjungan pasien yang ada pada puskesmas di Kabupaten Klaten pada tahun 2015

Gambar 5. Perintah SQL

Pada gambar 5 merupakan perintah menggunakan bahasa SQL untuk melihat jumlah kunjungan puskemas di Kabupaten Klaten pada tahun 2015 mencapai 642.582.

Gambar 6. Perintah SQL melihat 10 besar penyakit

Dari gambar 6 merupakan cara melihat 10 besar penyakit yang ada di Kabupaten Klaten dengan perintah SQL untuk tahun 2015.

STMIK AMIKOM Yogyakarta, 4 Februari 2017

Gambar 7. Hasil query menggunakan perintah SOL

Pada gambar 7, merupakan hasil dari query yang didapatkan untuk melihat jumlah penyakit 10 besar.

Gambar 8. Perintah SQL

Dari gambar 8 merupakan cara melihat 10 besar penyakit yang ada di Kabupaten Klaten dengan perintah SQL untuk tahun 2015 pada bulan Mei

Gambar 9. Hasil query menggunakan perintah SQL

Dari gambar 9 merupakan hasil dari perintah query yang didapatkan 10 penyakit terbesar pada bulan Mei tahun 2015. Kemudian ini menjadikan pemantauan kejadian penyakit di Kabupaten Klaten lebih cepat dan upaya pencegahan, penanggulangan lebih terencana dan tepat waktu.

Selain itu masih banyak lagi hasil analisis data yang dapat diambil menggunakan perintah SQL seperti pengelompokan jenis penyakit menular atau tidak, kebutuhan obat, serta pemetaan penyakit per kecamatan dan melihat penyakit yang paling banyak dengan seleksi per hari ataupun perbulan.

3. Kesimpulan

Dari hasil penelitian ini menghasilkan sebuah perancangan basis data yang dibutuhkan sesuai dengan dasar hukum yang ada dan kebutuhan suatu alur kerja. Keseluruhan proses perencanaan pembuatan basis data ini diharapkan menjadi acuan dalam pembuatan sistem informasi pemetaan di Kabupaten Klaten ataupun sistem informasi di puskesmas. Dengan telah ditetapkannya tabel, atribut, tipe data dan constraint, pada penelitian selanjutnya peneliti akan lebih mudah dalam pembuatan antar muka dan sistemnya, sehingga pengimplementasiannya semakin mudah. Dalam analisis data yang dibutuhkan akan lebih mudah apabila menggunakan sebuah basis data yang tepat.

Daftar Pustaka

- Republik Indonesia. 2009. Undang-Undang Nomor 36 Tahun 2009, tentang Kesehatan, Lembaran Negara RI Tahun 2009 No.144. Sekretariat Negara. Jakarta.
- [2] Republik Indonesia. 2014. Peraturan Pemerintah Nomor 46 Tahun 2014, tentang Sistem Informasi Kesehatan, Lembaran Negara RI Tahun 2014 No.126. Sekretariat Negara. Jakarta.

- [3] Republik Indonesia. 2014. Peraturan Menteri Kesehatan Nomor 75 Tahun 2014, tentang Pusat Kesehatan Masyarakat,
- [4] Andy Prasetyo Utomo, "Analisa Dan Perancangan Sistem Informasi Pemetaan Penanganan Ibu Hamil Dan Neonatal Di Kabupaten Kudus", Jurnal Sains, Vol.3 No.2, Desember 2010
- [5] Ikmah,"Perencanaan Basis Data Sistem Informasi Penjadwalan Sekolah", Seminar Nasional Teknologi Informasi dan Multimedia 2015, pp 5-10, Februari 2015

Biodata Penulis

Moenawar Kholil, memperoleh gelar Sarjana Komputer (S.Kom), Jurusan Ilmu Komputer, Universitas Widya Dharma Klaten, lulus tahun 2008. Sedang menempuh Program Pasca Sarjana Magister Teknik Informatika STMIK AMIKOM Yogyakarta. Saat ini bekerja sebagai Staff laboratorium komputer di Fakultas Ilmu Komputer, Universitas Widya Dharma Klaten.

M. Mujiono, memperoleh gelar Sarjana Komputer (S.Kom), Jurusan Teknik Informatika Sekolah Tinggi Teknik Atlas Nusantara Malang, lulus tahun 2011, Sedang menempuh Program Magister Teknik Komputer di STMIK AMIKOM Yogyakarta, saat ini menjadi pengajar di Akademi Komunitas Negeri Putra Sang Fajar Blitar.

Darno, memperoleh gelar sarjana komputer (S.Kom), teknik informatika, Universitas Sahid Surakarta. Saat ini sedang menempuh Program Magister Teknik Komputer di STMIK AMIKOM Yogyakarta

Hari Agustiyo ,memperoleh gelar Sarjana Komputer (S.Kom), Jurusan Teknik Informatika Universitas Nusantara PGRI Kediri, lulus tahun 2016. Saat ini melanjutkan Program Pasca Sarjana Magister Teknik Informatika di STIMIK AMIKOM Yogyakarta.

Nofriagara Davit Harnawan memperoleh gelar sarjana komputer (S.Kom) jurusan teknik informatika sekolah tinggi stmik amikom yogyakarta, lulus tahun 2016, saat ini sedang menempuh program magister teknik informatika di stmik amikom yogyakarta