Analisis Segmentasi Citra USG Hati Menggunakan Metode Fuzzy C-Mean
Abstract
Segmentasi merupakan proses yang sering digunakan dalam pemilahan citra dan telah menjadi subyek kegiatan penelitian. Fuzzy CMeans (FCM) adalah salah satu algoritma segmentasi yang banyak digunakan dan memiliki banyak varian dari hasil pengembangan metode tersebut. Dalam jurnal ini memberikan alternatif penyelesaian segmentasi citra dengan menerapkan metode pengembangan dari FCM yaitu Generalized Fuzzy CMeans Clustering. Metode membership constraint mengatasi noise dan meningkatkan konvergensi dari proses segmentasi. Dalam jurnal ini dilakukan segmentasi citra yang dihasilkan oleh metode FCM.
Segmentation is the process that is often used in sorting the image and has been the subject of research activities. Fuzzy CMeans (FCM) is one of the segmentation algorithm that is widely used and has many variants of the results of the development of such methods. In this paper provides an alternative solution to implement image segmentation methods, namely the development of FCM CMeans Generalized Fuzzy Clustering. Methods membership constraint overcome noise and improve the convergence of the segmentation process. In this paper carried the image segmentation generated by FCM method.
Full Text:
PDFReferences
Youssef, A., Image Downsampling and Upsampling Methods, National Institute of Standards and Technology.
Gonzalez R.C., Woods R.E., 2008, Digital Image Processing, Third Edition, Prentice Hall.
Gonzalez, R. C., Woods, R. E., 2004, Digital Image Processing Using MATLAB, Prentice Hall, Upper Saddle River, New Jersey.
Sowmya, B., Rani, B. S., 2010, Colour Image Segmentation Using Fuzzy Clustering Techniques and Competitive Neural Network, Applied Soft Computing, Vol 11, No 3, Hal 3170-3178.
Puspitasari, D., Tjandrasa, H., 2011, Deteksi Kepala Janin pada Gambar USG Menggunakan Fuzzy C-Means (FCM) dengan Informasi Spasial dan Iterative Randomized Hough Transform (IRHT), Tesis, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember, Surabaya
Lu, W., Tan, J., 2008, Detection of Incomplete Ellipse in Images with Strong Noise by Iterative Randomized Hough transform (IRHT), Pattern Recognition, Vol 41, No 4, Hal 1268-1279.
Refbacks
- There are currently no refbacks.